КУЛЬТУРА ОРГАНОВ И ТКАНЕЙ ПРЕДСТАВИТЕЛЕЙ РОДА YUCCA L.

П.А. КАРПОВ, кандидат биологических наук Институт клеточной биологии и генетической инженерии НАНУ

Род *Yucca* L. насчитывает около 42 видов древесных однодольных растений, произрастающих в Северной Америке. Представители рода *Yucca* являются ценными декоративными растениями, источниками природного волокна, а также природным источником стероидных гликозидов, являющихся основой для синтеза медицинских препаратов стероидного ряда, таких как кортизон и половые гормоны [18, 38].

Представители р. Уисса - медленнорастущие растения, с выраженной периодичностью цветения, основным способом размножения которых является семенная репродукция, тесно связанная с деятельностью опылителей - юкковых молей, имеющих специализацию на уровне отдельных родов, подродов, экологических групп и видов [14, 16, 28]. В условиях интродукции на юге Украины из-за отсутствия естественных опылителей, юкки оказываются не способными к завязыванью плодов без применения принудительного опыления. Исключение составляет способная к самоопылению Y. aloifolia [2, 6, 7, 11]. Это является основной причиной, по которой в настоящее время преобладают методы вегетативного размножения Yucca sp., отличающиеся низкой эффективностью [39]. Наряду с разработкой и совершенствованием методов искусственного опыления, которое значительно затруднено периодичностью цветения, а в случае с крупными видами, сложностью самой процедуры разработка методов клонального опыления [1, 7],актуальна микроразмножения представителей рода Yucca in vitro [37].

Индукция адвентивного побегообразования

In vitro быстрое размножение представителей рода *Yucca* L. чаще всего достигается посредством индукции закладки адвентивных почек [19, 25, 26].

Роберт с соавторами [37] обнаружили, что при индукции адвентивного побегообразования в культуре изолированных побегов, в случае с представителями семейства *Agavaceae*, обязательным условием является совместное действие низкой концентрации ауксина и высокой концентрации цитокинина [12]. Так, в Флоридском университете добились массового получения растений *Yucca* sp. через закладку придаточных почек на питательной среде Мурасиге и Скуга (МС) с добавлением α-нафтилуксусной кислоты (НУК) и 6-бензиламинопурина (БАП) [26].

При проращивании семян *Y. schidigera* Roezl. на среде MC, содержащей 1 % агара, закладка адвентивных почек наблюдалась в присутствии 1,33 мкМ БАП [20].

В Голландии разработана методика клонального микроразмножения химерной *Y. elephantipes* Regel., путем индукции закладки придаточных почек. Показано, что интенсивность адвентивного побегообразования изолированных боковых побегов *Y. elephantipes* определяется целым рядом факторов, из которых важнейшим является присутствие БАП и его концентрация, содержание сахарозы и температура. За 12 недель от материнского побега индуцировалось развитие 7-8 адвентивных побегов [32].

Проростки Y. valida, полученные in vitro в культуре изолированных семян, также были размножены путем клонирования in vitro посредством активации латеральных почек на модифицированной питательной среде МС, дополненной 1 мкМ индолилуксусной кислоты (ИУК) и 5 мкМ БАП [12]. При этом, был определен оптимальный баланс регуляторов роста. Было исследовано влияние различных комбинаций ИУК и БАП на процесс адвентивного побегообразования. При использовании исключительно ИУК, без добавления цитокинина, происходило развитие исключительно апикальной меристемы без признаков гипертрофии или каллусообразования. Наблюдалась положительная корреляция закладки латеральных побегов и концентрации БАП, однако статистически достоверная зависимость при совместном воздействии БАП и ИУК обнаружена не была. Максимальная закладка адвентивных побегов была отмечена при использовании 10 и 20 мкМ БАП в сочетании с

5 мкМ ИУК. Замена ИУК на 2,4-Д и НУК приводило к нарастанию каллуса. Таким образом, использование питательной среды, дополненной 10 или 20 мкМ БАП в сочетании с 5 мкМ ИУК, являлось более эффективным для адвентивного побегообразования в случае с *Y.valida* [12]. При этом закладка адвентивных побегов была отмечена на 10-й день культивирования и достигала максимального числа побегов на эксплант после 30-го дня культивирования. Использование высоких концентраций БАП (30 мкМ) вызывало гипертрофию и каллусогенез. В отсутствии регуляторов роста у изолированных микропобегов *Y. valida* всегда отмечался ризогенез, и применение ИУК не оказывало заметного влияния на активность ризогенеза. С другой стороны, присутствие БАП всегда вызывало его полное подавление [12].

С.Е. Бенц [15] была разработана система микроразмножения уникальных розово - и белоцветковых селекционных форм *Y. glauca*. Апикальные меристемы, взятые от взрослых растений, культивировались на питательной среде МС, дополненной различными комбинациями НУК (от 0,0 до 3,2 мкМ) и БАП (от 0,0 до 45 мкМ). При этом пролиферация адвентивных побегов также происходила при увеличении концентрации БАП [15].

Морфогенетический ответ на присутствие и концентрацию БАП и НУК был сходным для разных генотипов Y. glauca, а попытка замены БАП на N6-(2-изопентиниладенин) показала, что 2iP является неэффективным при индукции адвентивного побегообразования [15].

Таким образом, индукция адвентивного побегообразования в культуре изолированных побегов *Yucca sp.* с помощью БАП описана многими авторами: Bentz et al. [15] для *Y. glauca*; Pierik and Steegmans [32] для *Y. elephantipes*, Atta-Alla и Van Staden [13] для *Y. aloifolia*, Kaneda et al. [20] для *Y. schidigera*, Arce-Montoya [12] для *Y. valida*.

Ризогенез

Укоренение микропобегов *Yucca sp.*, как правило, наблюдается на безгормональных питательных средах [12, 15, 32], или средах, дополненных ИМК [13, 15, 32] или НУК [27]. ИУК, как правило, оказывается неэффективной [12].

Микропобеги *Y. glauca* успешно укоренялись на безгормональных питательных средах или средах, содержащих низкие концентрации β-индолил масляной кислоты (ИМК) [15]. Пролиферировавшие побеги *Y. aloifolia* укоренялись на питательной среде МС, содержавшей половинную концентрацию макро- и микро солей и дополненной 2,5–4,9 мкМ ИМК и 1% активированного угля [13]. Укоренение микропобегов *Y. elephantipes* происходило как на безгормональной питательной среде МС, так и на средах, дополненных 0,049-24,6 мкМ ИМК. Причем, оптимальный по эффективности и морфологии ризогенез отмечали на питательной среде, дополненной 4,9 мкМ ИМК [32]. Стабильный ризогенез отмечался в культуре изолированных микропобегов *Y. valida* в отсутствии регуляторов роста. При этом применение ИУК не оказывало заметного влияния на активность ризогенеза и морфологию корней, а присутствие БАП вызывало полное его подавление [12].

Согласно данным ряда авторов [13, 15, 32], во всех описанных случаях растения-регенеранты успешно адаптировались в почве.

Также в литературе описано получение культуры изолированных корней *Yucca* sp. Так, культура изолированных корней *Y. torreyi* (син. *Y. macrocarpa*) была получена из высечек корней проростков. Апексы корней *Y. torreyi* длиной 2,5 см культивировались в 125 мл колбах Эрленмейера, содержащих 50 мл жидкой среды Вайта (20 г/л сахарозы, pH=5,7) [41, 42], или МС (1/4 концентрации минеральных солей, полная концентрация NH₄NO₃, 3 мг/л глицерина, 20 г/л сахарозы, pH=5,7). При этом рост корней зависел от условий культивирования, а кривые роста были идентичны на обеих средах [23]. Индукция культуры корней наблюдалась также в случае *Y. schidigera* Roezl. при переносе неорганизованного каллуса, полученного на питательной среде МС, дополненной 4,52 мкМ 2,4-Д на среду МС, содержащую 16,11 мкМ НУК [27].

Каллусогенез

Впервые каллус юкки был получен в 1974 г. С. Стоксом на примере *Yucca glauca* [40]. При этом был разработан метод получения каллуса и клеточной суспензии из прорастающих семян *Y. glauca* на питательной среде МС, дополненной 0,53 мкМ 2,4-Д. Позже, в Институте биохимии растений АН ГрузССР получили каллус из эксплантов цветков *Y. gloriosa* на среде МС дополненной 2.6-5.3 мкМ 2,4-Д [29]. Каллус был получен из колеоптиля и высечек листа *Y. filifera* [33, 35]. Кhanna S. и Р. Purohit получили каллусную ткань из эксплантов листа на питательной среде МС, содержавшей 5,3 мкМ 2,4-Д, при этом восьминедельный каллус имел ростовой индекс 1,7 [24].

Активный каллусогенез наблюдался при проращивании семян *Y. schidigera* Roezl. на среде МС, содержащей 1 % агара в присутствии 1,36 мкМ 2,4-Д [20], а в случае *Y. valida*, на питательных средах МС дополненных 10-20 мкМ БАП в комбинации с 5 мкМ 2,4-Д или НУК [12].

В Грузии в течение многих лет велись работы по культивированию Y. gloriosa как потенциального промышленного источника стероидных гликозидов. Первичный каллус Y. gloriosa был получен от изолированных бутонов на питательной среде MC, дополненной 2,26-4,52 мкМ 2,4-Д. Успешное субкультивирование осуществлялось на питательной среде MC, дополненной 0,09226-0,226 мкМ 2,4-Д [3,4,9].

Каллусы некоторых видов *Yucca*, такие как *Y. filifera* [33] и *Y. schidigera* [20] продемонстрировали способность продуцировать стероидные гликозиды [34].

Информация относительно регенерации растений рода *Yucca* из каллуса в литературе пока отсутствует. Хотя С. Бенц отмечалась пролиферация побегов в культуре каллуса *Y. glauca* при увеличении концентрации БАП, в то время как в присутствии НУК и исключении БАП происходило угнетение побегообразования и пролиферация каллуса [15].

Материалы и методы

Объектами исследований служили *Yucca aloifolia* L. и *Y. torreyi* Shafer., растущие в коллекции Никитского ботанического сада.

Первичными эксплантами служили семена и изолированные зародыши, культивировавшиеся на безгормональных питательных средах Монье (М) [30] и МС [31].

Стерилизация семян производилась в две стадии: 1) предварительная поверхностная стерилизация плода 96%-ным этанолом и 2) стерилизация изолированных семян 70%-ным этанолом (1 мин) с последующей промывкой в дистиллированной воде. Семена высевались поверхностно на твердые питательные среды М и МС по 5-10 шт. в случае с *Y. torreyi* и 10-17 шт. в случае с *Y. aloifolia*.

Все дальнейшие манипуляции производились с ювенильными растениями, полученными *in vitro*.

В ходе исследований использовались модифицированные питательные среды M, MC и Quoirin, Lepoivre (QL) [36] с полной и половинной концентрациями солей.

При получении каллуса в качестве первичных эксплантов использовали зиготические зародыши, высечки листьев и корней растений, выращенных в культурах изолированных зародышей и семян на безгормональных питательных средах (M, MC, QL).

В дальнейших опытах культивирование осуществлялось на агаризованных питательных средах QL и MC с полной и половинной концентраций макро- и микросолей, дополненных БАП (0,0; 0,44; 0,89; 1,78; 2,22; 4,4; 6,62; 8,90; 11,12; 13,3 и 24,42 мкМ), ИУК (0,228; 2,85; 5,71 мкМ), ИМК (0,098; 0,197; 0,49; 0,98; 1,97; 2,46; 4,9; 9,8; 14,7 мкМ), НУК (0,107; 0,215; 0,43; 0,54; 1,07; 2,15; 2,69; 4,83; 5,37; 10,74 и 16,11 мкМ) и 2,4-Д (0,181; 0,45 и 18,1 мкМ) при 6%-ном содержании агара и постоянном значении рH=5,8, T=24°C и освещенности 1000-1200 лк.

Эффективность клонального микроразмножения оценивалась по формуле:

$$K = \frac{N - n}{n}$$

где: N — конечное число микропобегов; n — исходное количество микропобегов, K — эффективность микроразмножения

Частота регенерации (R) оценивалась в проценте эксплантов, образовывавших адвентивные побеги.

Для укоренения микропобегов использовалась среда MC с половинной концентрацией макро- и микросолей, содержащая 25 мг/л мезоинозитола, 15000 мг сахарозы и удвоенную концентрацию по хелатному комплексу (55,6 мг/л $FeSO_4 \cdot 7H_2O + 74,6$ мг/л Na_2EDTA) при pH=6,5.

Ауксины добавлялись в концентрации 1 мг/л в следующих соотношениях и концентрациях: 1) 5,71 мкМ ИУК; 2) 5,37 мкМ НУК; 3) 4,9 мкМ ИМК; 4) 9,8 мкМ ИМК; 5) 4,52 мкМ 2,4-Д; 6) 2,85 мкМ ИУК + 2,69 мкМ НУК; 7) 2,85 мкМ ИУК + 2,46 мкМ ИМК; 8) 2,69 мкМ НУК + 2,46 мкМ ИМК; 9) 5,14 мкМ ИУК + 0,45 мкМ 2,4-Д; 10) 4,83 мкМ НУК + 0,45 мкМ 2,4-Д; 11) 4,43 мкМ ИМК + 0,45 мкМ 2,4-Д.

Контролем служила среда МС оригинального состава без регуляторов роста.

Результаты и обсуждение

Первичная асептическая культура *Yucca aloifolia* и *Y.torreyi* была получена через культуру изолированных семян и зиготических зародышей на питательных средах М и МС, не содержащих регуляторы роста (рис. 1). При этом процент взошедших семян в условиях *in vitro* составлял 89-95% для *Y.torreyi* и 100% для *Y.aloifolia*. Для культуры изолированных семян *Yucca* был характерен длительный период прорастания. Так, например, в случае с *Y. aloifolia*, прорастание первых семян наблюдалось на 9-й день культивирования и заканчивалось на 125-й день. Все дальнейшие исследования проводились на культурах изолированных зародышей, а также на каллусных культурах индуцированных из листовых и корневых эксплантов ювенильных растений, полученных *in vitro*.

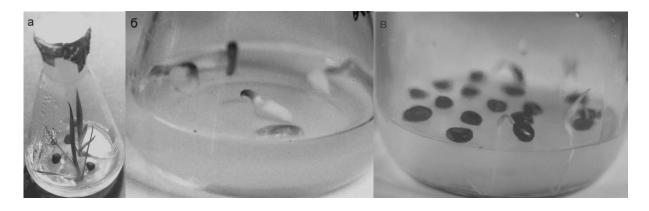


Рис. 1. Прорастание семян и изолированных зиготических зародышей *Y. torreyi* (а, б) и *Y. aloifolia* (в) на безгормональных питательных средах: a — Мурасиге и Скуга (1962); b — Мурасиге и Скуга (1962); b — на среде Монье (1968)

При культивировании изолированных зиготических зародышей *Y. torreyi* и *Y. alloifolia* на безгормональных питательных средах M, MC и QL полного и половинного составов, всегда отмечалось развитие полноценных растений. Культивирование изолированных зиготических зародышей на средах MC и QL, содержащих БАП (0,44; 0,89; 1,78; 2,22; 4,4; 6,62; 8,9; 13,3 мкМ), приводило к развитию основного побега, а также к адвентивному побегообразованию при совместном использовании БАП и низких концентраций НУК (0,11-2,15 мкМ) и ИМК

(0,1-1,97 мкM). При культивировании зародышей на средах с НУК (0,54; 1,07; 2,15; 2,69; 5,37; 10,74; 16,11 мкM) или ИМК (0,49; 0,98; 1,97; 2,46; 4,9; 9,8; 14,7 мкM) в концентрациях равных или преобладающих над цитокининами, происходило развитие корней различной морфологии (рис. 2, a), подавление развития побега и нарастание каллуса, с последующей пролиферацией многочисленных корней (рис. $2, \delta$). При этом, отмечено влияние концентрации питательной среды на морфогенез. Так на питательной среде ½ QL, дополненной 0,89 мкM БАП и 1,97 мкM ИМК, наблюдали ризогенез, сопровождавшийся полным подавлением развития побега (рис. 2, a). Использование среды QL с полной концентрацией макро- и микро-солей приводило к нарастанию каллуса с последующей пролиферацией многочисленных поверхностных корнеподобных структур (рис. $2, \delta$).

Каллусогенез и органогенез

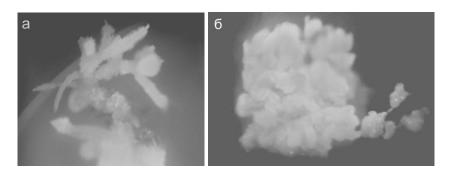


Рис. 2. Влияние на морфогенез изолированных зародышей *Yucca* питательной среды и преобладания концентраций ИМК.

a - ризогенез при культивировании на среде 1/2QL+0,89 мкМ БАП+1,97 мкМ ИМК; δ - каллусогенез с последующим формированием многочисленных корнеподобных структур на среде QL + 0,89 мкМ БАП+1,97 мкМ ИМК

Таблица 1 Влияние первичного экспланта на каллусогенез на примере *Y. torreyi* (питательная среда МС, дополненная 2,22 мкМ БАП и 18,1 мкМ 2,4-Д)

Первичный	Число	Каллусогенез	Цвет каллуса	Плотность каллуса	
эксплант	эксплантов (шт.)	(шт.)	цьст каллуса		
зародыш	30	27	светло-лимонный	плотный	
лист*	30	16	белый	средней плотности	
корень	30	3	белый	средней плотности	
-	-				

^{* -} высечки листьев брались из базальной зоны листа

Самым высоким морфогенетическим потенциалом обладал каллус, индуцированный из зиготических зародышей. Пассирование его с питательной среды MC + 2,22 мкM БАП + 18,1 мкМ 2,4-Д на среду QL + 8,9 мкМ БАП + 2,15 мкМ НУК вызывало активный морфогенез, реализуемый через геммо- (рис. 3, a, δ) и эмбриоидогенез (рис. 3, a, δ).

В наших экспериментах, реализация морфогенеза в культуре изолированных листовых эксплантов ювинильных растений *Y.torreyi* и *Y.alloifolia* происходила только через

каллусогенез. Прямой морфогенез нами не отмечен. При этом, наиболее активный каллусогенез из высечек листа (из базальной зоны), так же, как и в случае с зиготическими зародышами, наблюдался на питательной среде МС, дополненной 2,22 мкМ БАП и 18,1 мкМ 2,4-Д.

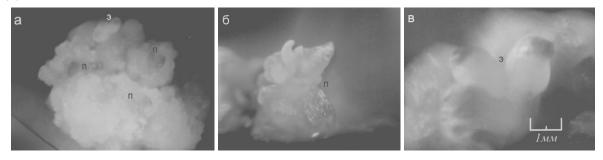


Рис. 3. Геммогенез (а, б) и эмбриоидогенез (а, в) в каллусной ткани зародышевого происхождения при перенесении с МС+2,22 мкМ БАП и 18,1 мкМ 2,4-Д, на QL + 8,9 мкМ БАП и 2,15 мкМ НУК (n - почки; э-эмбриоиды)

Каллус листового происхождения (рис. 4, *a*) был белый, рыхлый и не содержал проводящих элементов. При многократном пассировании на данной питательной среде был выделен каллус *Y. torreyi* без признаков морфогенеза, продолжавший активно нарастать даже после переноса на безгормональную среду МС и среды для регенерации. (рис. 4, *a*). Также отсутствовали проявления морфогенеза при помещении его на среды, вызывавшие морфогенез в каллусах зародышевого происхождения.

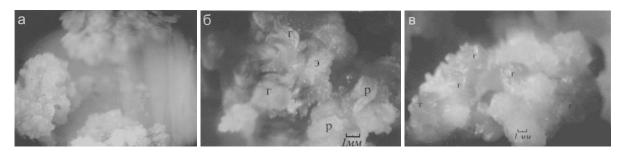


Рис. 4. Каллус *Y. torreyi* листового происхождения a - нарастание каллуса на питательной среде МС+2,22 мкМ БАП и 18,1 мкМ 2,4-Д; δ - каллус листового происхождения на среде МС, дополненной 8,9 мкМ БАП + 2,15 мкМ НУК; ϵ - геммогенез в каллусе листового происхождения на среде ½ QL, дополненной 8,9 мкМ БАП + 2,15 мкМ НУК (ϵ - геммогенез; ϵ - эмбриогенная зона; ϵ - ризогенез)

Иногда, при культивировании листовых эксплантов Y. torreyi на среде MC, содержащей 2,22 мкМ БАП и 18,1 мкМ 2,4-Д, происходило образование каллуса, отличавшегося от вышеописанного по морфологии. Что, вероятно, обуславливается гетерогенностью индуцирующих (эмбриогенных) клеток тканей листа. Последний отличался способностью к морфогенезу. При пассировании его со среды MC + 2,22 мкМ БАП + 18,1 мкМ 2,4-Д на среды для регенерации, наблюдалось образование корней различной морфологии и единичный геммогенез. Подобные процессы наблюдались и при перенесении каллуса на среду MC + 8,9 мкМ БАП + 2,15 мкМ НУК (рис. 4, δ). Субкультивирование этого каллуса на среде QL полвинной концентрации и дополненной 8,9 мкМ БАП и 2,15 мкМ НУК индуцировало геммогенез (рис. 4, δ). Дальнейшее развитие адвентивных почек отмечалось только при перенесении каллуса на безгормональные среды MC и QL, содержащие полные концентрации макро- и микросолей. Эмбриоидогенез в таком каллусе обнаружен не был.

Наряду с этим, слабое каллусообразование наблюдалось при культивировании высечек листа *Yucca torreyi* на среде QL, содержащей 8,9 мкМ БАП и 2,15 мкМ НУК. К концу второго-третьего месяца культивирования на данной питательной среде или при перенесении

каллуса на безгормональную среду QL, наблюдали активный соматический эмбриоидогенез. Пассирование на другие безгормональные среды $(MC, \frac{1}{2}MC, \frac{1}{2}QL)$ не вызывало формирование эмбриоидов. Культивирование образовавшихся эмбриоидов на безгормональных средах стимулировало развитие вплоть до торпедовидной стадии. Однако дальнейшее развитие эмбриоидов не отмечалось.

Помещение высечек корней (2-3 см) ювенильных растений *Y.torreyi* и *Y. aloifolia*, полученных в культуре изолированных зиготических зародышей и семян, на питательные среды, содержащие различные концентрации НУК (0,54; 2,15; 2,69; 5,37; 10,74; 16,11 мкМ) или ИМК (0,49; 1,97; 2,46; 4,9; 9,8; 14,7 мкМ), способствовало непродолжительному росту апексов. Причем, как показали опыты, проведенные на высечках корней *Y. aloifolia*, рост в темноте был значительно более активным. По истечении 1-1,5 месяцев, как правило, рост прекращался, корни темнели и отмирали. Нарастания изолированных корней, регенерировавших из каллуса, также не происходило. Прямая регенерация из корневых эксплантов также не была отмечена ни на средах с НУК и ИМК, ни при введении БАП (0,44; 1,78; 2,22; 4,4; 8,9; 13,3 мкМ).

Помещение высечек корней *Y.torreyi* на среду МС + 2,22 мкМ БАП + 18,1 мкМ 2,4-Д индуцировало нарастание каллуса только у 9 % эксплантов. Каллусогенез отличался низкой интенсивностью и происходил по всей длине экспланта. Спустя месяц образование каллуса постепенно прекращалось и не возобновлялось при пассировании на свежие питательные среды. Реализация гемморизогенеза или эмбриоидогенеза в каллусе корневого происхождения у исследованных нами видов не отмечена.

Таким образом, реализация морфогенетических потенций тканей и органов *Y. torreyi* и *Y. aloifolia* зависела от целого ряда факторов. Основными из которых являлись: тип первичного экспланта, состав питательной среды, концентрация и соотношение регуляторов роста, продолжительность культивирования и количество пассажей.

Адвентивное побегообразование

В отличии от непрямого морфогенеза, прямое образование почек, минуя каллусогенез, обеспечивает генетическую однородность растений и позволяет избежать появления сомаклональной изменчивости [5, 8]. Как было показано, в результате ранее проводившихся исследований [12, 15, 19, 20, 25, 26, 32], закладка адвентивных побегов в культуре изолированных побегов *Yucca sp.* чаще всего достигается при совместном использовании БАП и низкой концентрацией ауксина.

В результате подбора оптимальных условий культивирования, времени взятия первичного экспланта, подбора питательных сред (MC, QL) и соотношения фитогормонов (ИМК, НУК, БАП), нами были разработаны три способа индукции закладки придаточных почек в культуре $Y.\ torreyi$

При первом способе изолированные зародыши высаживали на среду QL, содержащую 8,9 мкМ БАП и 2,15 мкМ НУК. На этой среде закладка адвентивных почек начиналась сразу после прорастания зародыша. Сначала происходило формирование основного побега, а затем у его основания закладывались адвентивные почки (1-6 шт.) без образования корней (рис. 5, а). При последующих пассажах аналогичную закладку адвентивных почек наблюдали и в основании множественных побегов. Для данного способа было характерно очень незначительное каллусообразование между множественными побегами в местах соприкосновения с питательной средой. Нарастание каллуса в основании побегов оказывало угнетающее влияние на адвентивное побегообразование, поэтому при последующих пассажах каллус удаляли.

При втором способе изолированные зародыши высаживали на среду QL, содержащую 8,9 мкМ БАП и 1,97 мкМ ИМК. При этом происходило образование единичных микропобегов и активное нарастание каллуса в основании побегов. Ризогенез не наблюдали. Пассирование побегов на среду QL, дополненную 8,9 мкМ и 2,15 мкМ НУК, вызывало активную закладку адвентивных почек (от 2 до 14 шт.). Образование почек при условии предварительного субкультивирования на среде QL, дополненной 8,9 мкМ БАП и 1,97 мкМ ИМК, было более эффективным по сравнению с первым способом, а развивающиеся побеги (рис. $5, \delta$)

отличались большей силой роста. Способность к активной закладке придаточных почек и высокая сила роста сохранялись и при дальнейшем пассировании на среде QL, дополненной 8,9 мкМ БАП и 2,15 мкМ НУК. После нескольких пассажей каллусообразование в основании побегов заметно снижалось.

Третий способ клонального микроразмножения *Y. torreyi* был разработан на основе среды, содержащей макро- и микросоли по Мурасиге и Скугу [31]. При этом изолированные зародыши высаживали на среду МС, не содержащую фитогормоны. Через две недели после прорастания зародышей и образования растений с розеткой из двух-трех листьев, эпикотель переносили на среду МС, содержащую 0,54 мкМ НУК и 4,4 мкМ БАП. На данной среде происходила активная закладка адвентивных почек (2-10 шт.), в дальнейшем развивавшихся в полноценные побеги. (рис. 5, в). Для этого пути характерно отсутствие оводненности листьев, а также нарастание плотного каллуса в месте контакта побегов с питательной средой, не затрагивающего розетки листьев.

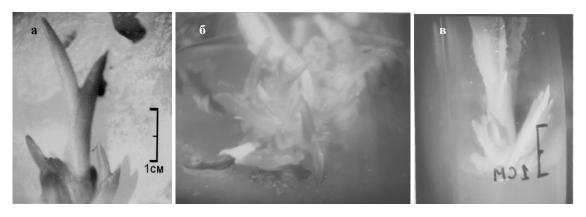


Рис. 5. Адвентивное побегообразование в культуре изолированных побегов *Y. torreyi* a - на среде QL, содержащей 8,9 мкМ БАП и 2,15 мкМ НУК; δ - на среде QL, содержащей 8,9 мкМ БАП и 2,15 мкМ НУК, после субкультивирования на среде QL + 8,9 мкМ БАП + 1,97 мкМ ИМК; δ - на среде Мурасиге и Скуга, содержащей 4,4 мкМ БАП и 0,54 мкМ НУК

При работе с *Yucca aloifolia*, из-за меньших размеров семян, извлечение зиготических зародышей было значительно затруднено. Поэтому, отимальным первичным эксплантом являлись семена, полученные в условиях интродукции. Все дальнейшие исследования проводились на эпикотелях проростков, полученных *in vitro* на безгармональной питательной среде МС. Апробация питательных сред, разработанных для индукции адвентивного побегообразования в культуре эпикотиля *Y. torreyi*, показала их неэффективность применительно к *Y. aloifolia*. Поэтому была проведена работа по подбору питательных сред и условий культивирования применительно к данному объекту исследования.

За основу была взята питательная среда QL [36], хорошо зарекомендовавшая себя при работе с *Y. torreyi*. Эпикотили помещались на питательную среду QL, содержащую 2,15 мкМ НУК и различные концентрации БАП (2,22; 4,4; 6,62; 8,9; 24,42 мкМ). При этом рост изолированных эпикотилей наблюдался в диапазоне концентрации БАП от 2,22 до 24,42 мкМ, а адвентивное побегообразование – исключительно в диапазоне концентраций от 4,4 до 8,9 мкМ БАП. Причем, более интенсивным оно было на питательной среде, дополненной 6,62 мкМ БАП и 2,15 мкМ НУК. При понижении концентрации НУК до 0,215 мкМ и добавлении БАП в концентрациях равных 2,22, 4,4 и 6,62 мкМ, адвентивное побегообразование было отмечено только на питательной среде, содержащей 6,62 мкМ БАП.

Понижение концентрации НУК с 0,215 до 0,107 мкМ, а также замена НУК на ИМК, ИУК или 2,4-Д в концентрациях эквивалентных 2 мг/л, показало, что более активное побегообразование происходило на питательной среде QL, дополненной 8,9 мкМ БАП и 0,098 мкМ ИМК. Питательная среда QL, содержащая 6,62 мкМ БАП и 0,107 мкМ НУК, оказалась не эффективной для адвентивного побегообразования. В дальнейшем, при повышении

концентрации НУК, ИМК, ИУК и 2,4-Д до концентрации эквивалентной 0,04 мг/л (0,215 мкМ НУК, 0,197 мкМ ИМК, 0,228 мкМ ИУК, 1,81 мкМ 2,4-Д) на фоне 6,62 мкМ БАП, адвентивное побегообразование отмечали только на питательных средах, содержащих НУК и ИМК. При этом коэффициент микроразмножения (К) был выше на питательной среде с НУК (K=0,8), чем на среде, содержавшей ИМК (K=0,73). Хотя, частота регенерации (K) в последнем случае была выше – 42,3 % против 29,3 % в варианте с НУК.

Также было исследовано влияние на адвентивное побегообразование разбавления питательной среды QL в два раза (½ QL). При этом, значение pH, концентрации сахарозы, мезоинозитола и регуляторов роста оставались неизменными. Адвентивное побегообразование происходило только на питательной среде ½ QL дополненной 6,62 мкМ БАП и 0,197 мкМ ИМК ($K=0,4;\ R=40\%$). Во всех других вариантах (6,62 мкМ БАП / 0,215 мкМ НУК, 6,62 мкМ БАП / 0,228 мкМ ИУК; 6,62 мкМ БАП / 0,181 мкМ 2,4-Д), адвентивное побегообразование не наблюдали.

При применении питательной среды QL, содержащей 6,62 мкМ БАП и 0,322 мкМ НУК, максимальное число адвентивных побегов Y. aloifolia достигало семи при (K = 0.83; R = 56.5 %) (рис. 6). При этом замена НУК на ИМК оказалась менее эффективной (K = 0.38; R = 40 %).

Рис. 6. Адвентивное побегообразование *Y. aloifolia* на питательной среде QL, дополненной 6,62 мкМ БАП и 0,322 мкМ НУК

Дальнейшая работа по оптимизации питательных сред показала, что в случае с *Y. aloifolia* наиболее эффективное адвентивное побегообразование происходило на питательных средах QL, дополненных 6,62 мкМ БАП и 0,43 мкМ НУК ($\max - 8$ побегов; K = 0,95; R = 64,2%) и 6,62 мкМ БАП и 0,54 мкМ НУК ($\max - 7$ побегов; K = 1,04; R = 76%). Дальнейшее увеличение концентрации НУК вызывало гипертрофию и каллусогенез.

Ризогенез

В случаее с *Y. torreyi* для индукции ризогенеза было достаточно перенести микропобеги на безгормональные питательные среды, содержащие полный или половинный состав макро- и микросолей МС, или QL. Недостатком данного способа являлся длительный период (около месяца), проходящий от момента посадки до начала ризогенеза. В отдельных случаях ризогенез вообще не наблюдали. Наиболее эффективным оказалось использование для укоренения микропобегов *Y. torreyi* питательной среды МС, содержащей 1,07 мкМ НУК. В этом случае к началу второй недели с момента пассажа наблюдали образование корней нормальной морфологии.

Применение данной питательной среды для укоренения *Y. aloifolia* не способствовало стабильному ризогенезу. Поэтому была проведена работа по подбору оптимальной питательной среды для укоренения микропобегов данного вида. Во всех работах по клональному микроразмножению представителей рода *Yucca* успешное укоренение микропобегов достигалось на различных модификациях питательной среды МС [12, 13, 15,

27, 32]. Поэтому для укоренения *Y. aloifolia* именно эта питательная среда была выбрана нами за основу при подборе оптимального соотношения и концентрации регуляторов роста.

Обычно для укоренения микропобегов используют ИУК, ИМК и НУК. 2,4-Д стимулирует ризогенез только в очень низких концентрациях, часто не влияет на укоренение или оказывается токсичным для растения [10]. Хорошо зарекомендовали себя смеси ауксинов. Так, комбинация из ИУК и ИМК, как правило, оказывает больший эффект, чем использование этих стимуляторов по отдельности. При этом комбинация ИМК, НУК и 2,4-Д дает значительно более сильный ризогенный эффект, чем раздельное использование этих регуляторов роста [17].

В опытах с микропобегами *Y. aloifolia*, были испытаны как отдельные регуляторы роста, так и их комбинации (табл. 2). Контролем служила питательная среда МС без регуляторов роста. Ризогенез был отмечен на шестой день на питательных средах, содержащих 4,9 мкМ ИМК и 2,85 мкМ ИУК + 2,46 мкМ ИМК. На 30-й день ризогенез был отмечен на питательных средах: MC + 5,71 мкМ ИУК, MC + 4,9 мкМ ИМК, MC + 2,85 мкМ ИУК + 2,46 мкМ ИМК, MC + 4,83 мкМ НУК + 0,45 мкМ 2,4-Д, а также на контрольной среде МС, не содержащей регуляторы роста (табл. 2).

Таблица 2 Укоренение микропобегов *Y.aloifolia* L. и их морфология под воздействием различных ауксинов (спустя 30 суток от начала культивирования)

ауксинов (спустя 30 суток от начала культивирования)							
	Количество побегов			Нарастание каллуса в основании побега		Хлороз	
Среда			укоре-	в основа	ании пооста		к-во хлоро-
	укоренив- шихся, %	общее, шт.	нившихся,	+/-	% побегов	+/-	тичных
			шт.				листьев, шт.
K (MC)	83,3	12	10*	-	0	+	4±2
5,71 мкМ ИУК	12,5	16	2	-	0	+	2±2
5,37 мкМ НУК	0	20	0	+	70	+	3,5±1,5
4,9 мкМ ИМК	70,5	17	12	-	0	+	1±1
4,52 мкМ 2,4-Д	0	17	0	+	100	+	2±2
2,85 мкМ ИУК + 2,69 мкМ НУК	0	21	0	+	100	+	2±2
2,85 мкМ ИУК + 2,46 мкМ ИМК	36,4	22	8	-	0	+	1,5±1,5
2,69 мкМ НУК + 2,46 мкМ ИМК	0	21	0	+	42,9	+	1,5±0,5
5,14 мкМ ИУК + 0,45 мкМ 2,4-Д	0	18	0	+	38,9	+	2±2
4,83 мкМ НУК + 0,45 мкМ 2,4-Д	12,5	16	2	+	33,3	+	2,5±2,5
4,43 мкМ ИМК + 0,45 мкМ 2,4-Д	0	18	0	+	100	+	1,5±1,5

^{* -} недоразвитые корни

Наибольшее количество микропобегов (83,3%) укоренялось на контрольной среде МС, не содержащей регуляторы роста. Однако качество регенерантов было низким и растения погибали на этапе адаптации. Лучшей для укоренения микрочеренков *Y. aloifolia* оказалась среда МС, дополненная 4,9 мкМ ИМК. На данной питательной среде отмечали высокий процент укоренившихся микропобегов (70%) и высокое качество полученных растений. При увеличении концентрации ИМК с 4,9 мкМ до 9,8 мкМ вместо ризогенеза наблюдалось активное нарастание каллуса.

Существенное влияние на укоренение микропобегов также оказывала интенсивность освещения. Нормальный ризогенез наблюдали в диапазоне от 800-1200 лк. При увеличении

интенсивности освещения до 2000 лк происходило нарастание каллуса в основании микропобегов и полное подавление ризогенеза.

Выводы

Таким образом, высоким морфогенетическим потенциалом обладали изолированные зиготические зародыши, реализовывавшие все три пути морфогенеза, а низким — экспланты корней. Листовые экспланты также показали высокий морфогенетический потенциал, но реализация его происходила только через каллусогенез, при этом индукция образования морфогенных структур из листового каллуса происходила достаточно трудо, чем в каллусе, индуцированном из зиготических зародышей.

Полученные нами результаты подтвердили данные литературы о том, что решающим фактором при индукции каллусных культур растений рода *Yucca*, вне зависимости от первичного экспланта и видовой принадлежности, является присутствие в питательной среде 2,4-Д [3, 4, 9, 12, 20, 24, 29, 33-35, 40]. Так, у исследованных видов оптимальной питательной средой для индукции каллуса, вне зависимости от типа первичного экспланта оказалась питательная среда МС, дополненная 2,22 мкМ БАП и 18,1 мкМ 2,4-Д. Наряду с этим, высоким морфогенетическим потенциалом обладали каллусы, полученные от зиготических зародышей и листовых эксплантов, при работе с которым удалось индуцировать геммогенез, гемморизогенез и соматический эмбриогенез. Несмотря на это, получить растения рода *Yucca* путем регенерации из каллуса пока не удается. Анализ литературы также показал, что в отношении других исследованных видов рода *Yucca* подобные данные пока отсутствуют.

Размножение юкк путем идукции закладки придаточных побегов на данный момент представляется наиболее перспективным и реализовано на примере шести видов рода [12, 13, 15, 20-21, 22, 32]. В таблице 3 представлены сводные данные по результатам наших исследований и данных литературы, отображающие основные характеристики питательных сред для индукции адвентивного побегообразования в культуре изолированных побегов *Yucca* sp.

Таблица 3 Питательные среды и соотношения регуляторов роста использовавшиеся для индукции адвентивного побегообразования (по данным литературы и результатам исслелований)

исследованин)						
Вид	Питательная среда	БАП	Ауксин	Источник информации		
V alaifalia	MC	4,4-17,8 мкМ БАП 1,1-4,5 мкМ (TDZ)	1,1-2,7 мкМ НУК 0,5-1,1 мкМ НУК	[13]		
Y. aloifolia	QL	6,62 мкМ	0,266-0,44 мкМ НУК	результаты исследований		
Y. elephantipes	MC	4,4 мкМ	-	[32]		
Y. glauca	MC	4,4-8,9 мкМ	3,2 мкМ НУК	[15]		
Y. torreyi	QL	8,9 мкМ	2,15 мкМ НУК	результаты исследований		
	MC	4,4 мкМ	0,54 мкМ НУК	результаты исследований		
Y. schidigera	MC	1,33 мкМ	-	[20]		
Y. valida	MC	5-20 мкМ	1 мкМ ИУК	[12]		

Как видно из таблицы 3, основным фактором индукции адвентивного побегообразования в культуре *Yucca* sp., как правило, является присутствие в питательной среде БАП в концентрации от 1,33 до 20 мкМ на фоне низкой концентрации НУК (0,266-3,2 мкМ). Также имеются данные о возможности индукции адвентивного побегообразования у *Y. aloifolia* с применением TDZ в комбинации с НУК [13]. И, хотя, многие вопросы еще остаются открытыми, наработанный рядом исследователей экспериментальный материал и результаты

данных исследований позволяют составить общую схему размножения представителей рода *Yucca* (рис. 7), применимую при массовом размножении на основании реализации морфогенетической программы индукции адвентивного побегообразования в культуре изолированных побегов.

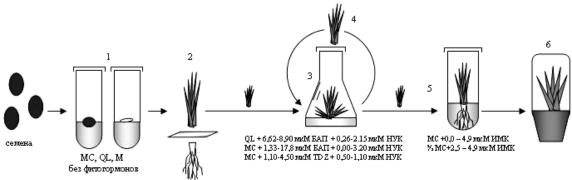


Рис. 7. Общая схема клонального микроразмножения представителей рода *Yucca* L. 1 – культура изолированных семян и зиготических зародышей; 2 – отделение эпикотеля; 3 – культивирование эпикотеля на питательных средах для адвентивного побегообразования; 4 – культивирование дочерних побегов на средах для массового клонального микроразмножения; 5 – укоренение микропобегов на средах, стимулирующих ризогенез; 6 – адаптация растений-регенерантов

Список литературы

- 1. А.с. №515498. СССР, кл. А 01 Н 1/02. Способ искусственного опыления растений *Yucca spp.* L. / Голубев В.Н., Максимов А.П., Волокитин Ю.С., Новикова В.М. (СССР). Опубл. 1973.
- 2. Анисимова А.И, Воинов В.Г., Клайда Ф.К., Чернова Н.М., Эггерс Е.В. Деревья и кустарники // Труды Гос. Никит. ботан. сада. 1939. Т. 22, Вып. 2. С. 115.
- 3. Гогоберидзе М.К., Мамаладзе М.Н. Изучение влияния компонентов среды на рост ткани бутонов юкки славной // Сообщения АН ГССР. 1980. Т. 10, № 2. С. 477.
- 4. Гогоберидзе М.К., Мамаладзе М.Н., Джаошвили М.Р., Каранова С.Л., Пхеидзе Т.А., Сулаквелидзе Ц.П. Характеристика суспензионной культуры клеток *Yucca gloriosa* L. // Физиология растений. 1988. Т. 35, Вып. 2. С. 378-384.
- 5. Кунах В.А. Біотехнологія лікарських рослин. Генетичні та фізіолого-біохімічні основи. К.: Логос, 2005. 730 с.
- 6. Максимов А.П., Новикова В.М., Карпов П.А. Перспективы размножения юкки крупноплодной (*Yucca macrocarpa* Engelm.) в условиях интродукции // Ботанические сады центры сохранения биологического разнообразия мировой флоры: Сессия Совета ботан. садов Украины, 13-16 июня, 1995, Ялта, Украина. Тез. докл. Ялта. 1995. С. 136.
- 7. Максимов А.П., Мухортова Т.Г., Новикова В.М., Кузнецов В.Н. Биоэкологические характеристики и качество семян видов Yucca (Dill.) интродуцированных в Крым // Растительные ресурсы. 1988. Т. 24, № 2. С. 230-237.
- 8. Мельничук М.Д., Новак Т.В., Кунах В.А. Біотехногія рослин. К.: ПоліграфКонсалтинг, 2003. 520 с.
- 9. Месхи А.Б., Гогоберидзе М.К., Кацитадзе П.К. Культура тканей юкки славной *Yucca gloriosa* // Изв. АН ГССР. Сер. биол. 1978. Т. 4, № 1. С. 79.
- 10. Полевой В.В. Физиология растений: Учеб. для биол. спец. вузов. М.: Высшая школа, 1989.-464 с.
- 11. Руссанов Ф.Н. Новые взаимосвязи в новых условиях жизни на примере юкки // Узбекистон Биология журнали / Узбекский биологический журнал. Изд-во Академии Наук Узбекской ССР. 1959. № 5. С.54-57.

- 12. Arce-Montoya M., Rodríguez-Álvarez M., Hernández-González J.A., Robert. M.L. Micropropagation and field performance of *Yucca valida*. // Plant Cell Rep. 2006. Vol. 25. P. 777-783.
- 13. Atta-Alla H., Van Staden J. Micropropagation and establishment of *Yucca aloifolia*. // Plant Cell Tissue Organ Cult. 1997. Vol. 48, N 3. P. 209-212.
- 14. Baker H.G. Yuccas and Yucca Moths a historical commentary. // Annals of Missouri Botanical Garden. 1986. Vol. 73, N 3. P.556-564.
- 15. Bentz S.E., Parliman B.J., Talbott H.J., Ackerman W.L. Factors affecting *in vitro* propagation of *Yucca glauca*. // Plant Cell Tiss. Org. Cult. 1988. –Vol. 14. P. 111-120.
- 16. Davis D.R. 1967. A revision of the moths of subfamily Prodoxinae (Lepidoptera: Incurvariidae). U.S. Natl. Mus. Bull. N.255. Smithsonian Institution, Engelmann G. George Engelmann's Notes on the Pollination of *Yucca*. // Annals of Missouri Botanical Garden. 1974. Vol. 61. P. 907.
- 17. Hartmann H.T. & D.E. Kester Plant propagation. Principles and practices. 4th edition. Prentce-Hall Inc.: Englewood Cliffs, 1983. 727 p.
- 18. Hostettmann K. and Marston A. Saponins. Cambridge: Cambridge University Press, 1995. 548 p.
- 19. Jones O.P., Hopgood M.E., O'Farrel D. Propagation *in vitro* of M 26 apple rootstocks. // J. of Horticultural Science. 1977. Vol. 52. P. 235-238.
- 20. Kaneda N., Nakanishi H., Staba J.E. Steroidal constituents of Yucca schidigera plants and tissue culture // Phytochemistry. 1987. Vol. 26. P. 1425-1429.
- 21. Karpov P.A. Clonal propagation of *Yucca aloifolia* L. // Acta Universitatis Latviensis. Biology. 2004. Vol. 676. P.177-182.
- 22. Karpov P.A. Features of clonal micro propagation of Torrey Yucca. // Plant Physiol. Biochem. 2000. Vol. 38. P. 19.
- 23. Kausch A.P. and Horner H.T. Differentiation of raphide crystal idioblasts in isolated root cultures of *Yucca torreyi* (*Agavaceae*) // Can. J. Bot. 1984. –Vol. 62. P. 1474-1484.
- 24. Khanna S.C., Purohit P.V. Studies of steroidal sapogenins from *Yucca alaefolia* L. // Basic Life Sciences / Eds. Sen S.K., Giles K.L. New York: Plenum Publ., 1983. Vol. 22. P. 65-69.
- 25. Kukufczanka K. and K.D. Kromer. Regeneracja Yucca sp. z rozmnóžek w kulturže *in vitro*. // Acta Univ. Wratisl.: Pr. Bot. 1984. N.30. P.39-48.
- 26. Litz R.E. and R.A. Conover. Tissue culture propagation of some florage plants. // Proceedings of the Florida State Horticultural Society. 1978. –Vol. 90. P. 301-303.
- 27. MacCarthy J.J. and Staba E.J. Morphogenesis in *Yucca schidigera* Roezl. Root organ cultures // Ann. Botany. 1985 Vol. 56. N 2. P. 205-210.
- 28. McKelveyn S.D. Yuccas of Southwestern United States. Part II. Massachusetts. USA: Publ. Arnold Arboretum of Harvard Univ.: Jamaica Plants. Mass. 1947. P. 1-193.
- 29. Meskhi A.B., Gogoberidze M.K., Katsitadze K.P. Tissue culture of *Yucca gloriosa*. // Chem Abstr. 1978. Vol. 89. P.358-359.
- 30. Monnier M. Comparison development of unripe embryos of Capsella Bursa-pastoris *in vitro* and *in situ*. // Bull. Soc. bot. France. 1968. Vol. 115. P. 15-29.
- 31. Murashige T., Skoog T. A revised medium for rapid growth and bioassays with tobacco tissue cultures // Plant Physiol. 1962. Vol. 15, N 3. P. 473-497.
- 32. Pierik R.L.M., Steegmans H.H.M. Vegetative propagation of a chimerical *Yucca elephantipes* Regel *in vitro* // Sci. Hort. 1983. Vol. 21. P. 261-272.
- 33. Quintero A., Rosas V., Zamudio F., Capella S., Romo de Vivar A. Tissue culture of *Yucca filifera* cells. Identification of steroidal precursors // Tissue culture / Ed. Fujiwara A. Japan: Maruzen, 1982. P. 295-296.
- 34. Quintero A. *Yucca* // Hand book of plant cell culture. Ornamental Species / Eds. Ammirato P.V., Evans D.R., Sharp W.R., Bajaj Y.P.S. New York: McGraw-Hill Publishing Co., 1983. P. 783-799.

- 35. Quintero A., Zamudio F., Rasas V., Capella S., Romode Vivar A. Sarsasapogenin in *Yucca filifera* callus culture // Rev. Latinoam Quim. 1987. Vol. 18. P. 24-28.
- 36. Quorin M. and P. Lepover. Etude de milieux adaptés aux cultures aux cultures *in vitro* de *Prunus* // Acta Hort. 1977. Vol. 78. P. 437.
- 37. Robert M.L., Herrera J.L., Contreras F., Scorer K.N. *In vitro* propagation of *Agave fourcroydes* Lem (Henequen) // Plant Cell Tissue Organ Cult. 1987. Vol. 8. P. 37-48.
- 38. Romo de Vivar A. Productos naturales de la flora Mexicana. Mexico: Editorial Limusa, 1985. P. 194-202.
- 39. Rout G.R., Mohapatra A., Mohan Jain S. Tissue culture of ornamental pot plant: A critical review on present scenario and future prospects // Biotechnology Advances. 2006. Vol. 24. P. 531-560.
- 40. Stohs S.J., Sabatka J.J., Obrist J.J., Rosenberg H. Sapegenins of *Yucca glauca* tissue culture. // Lloydia. 1974. Vol. 37. P. 504-505.
- 41. White P.R. A handbook of plant tissue culture. New York: Jacques Cattell Press, 1943. Vol. 4. P. 791-794.
- 42. White P.R. The cultivation of plant and animal cells. 2^{nd} ed. New York: The Roland Press, 1963. 239 p.

Tissue and organ culture of Yucca L.

Karpov P.A.

The optimal nutrient mediums and concentrations of growth regulators providing an effective cultivation of the isolated seeds and zygotic embryos of *Yucca torreyi* and *Y. aloifolia*, axillary microshoots regeneration, rooting, callus formation and realisation of different ways of morphogenesis have been determined. The literature review regarding the *in vitro* cultivation and micropropagation of yuccas have been provided. Based on literature data and results of individual experimental studies the general diagram of clonal micropropagation of representatives of the genus *Yucca* L. have been done.