Vesilna, Katusha, Kirgizskaya Zimnyaya, Noyabrskaya, Pectoral, Posmishka, Provintsialka, Starcrimson, Talgarskaya Krasavitsa.

Key words: genepool; variety-carrier of sign; stress-factor; adaptability; breeding.

УДК 634.71:57.086.83

СОХРАНЕНИЕ БИОРАЗНООБРАЗИЯ ОБРАЗЦОВ РОДА RUBUS L. В IN VITRO И КРИОКОЛЛЕКЦИЯХ

Юлия Васильевна Ухатова, Светлана Ефимовна Дунаева, Людмила Евгеньевна Шувалова, Карина Шамилевна Позднякова., Татьяна Андреевна Гавриленко

ФГБНУ «Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений имени Н.И. Вавилова (ВИР)», г. Санкт-Петербург, Россия uvl3011@yahoo.com

В статье приведены данные о современном состоянии *in vitro* коллекции представителей рода *Rubus* L. в ВИРе и представлены первые результаты по криоконсервации сортов малины в ВИРе методом дроплет-витрификации.

Ключевые слова: сорта малины красной; криоконсервация; дроплет-витрификация.

Введение

В Институте генетических ресурсов растений (ВИР) им. Н.И. Вавилова *in vitro* коллекция представителей рода *Rubus* включает 177 образцов (табл. 1). Коллекция *in vitro* содержит 83 сорта малины красной, из них 23 сорта зарубежной селекции и 60 сортов российской селекции, которые были созданы с 1920 по 2000 годы в различных научных учреждениях, расположенных в разных эколого-географических регионах РФ.

Таблица 1 In vitro коллекция образцов рода Rubus L. в ВИРе

Сорта малины и ежевики:	Число	Клоны образцов дикорастущих ви-	Число об-
	образцов	дов:	разцов
Сорта красной малины	83	Малины (subg. Idaeobatus Focke)	40
Сорта черной малины	4	Арктические ягоды (subg.Cyclactis	4
		Focke)	
Сорта ежевики	19	Ежевики (subg. Rubus Watson)	23
Малинно-ежевичные гибрид-	4		
ные сорта			
Итого	110		67

Из 83 образцов селекционных сортов малины красной около 65% были введены в культуру *in vitro* от растений полевой коллекции с изученным биохимическим составом ягод [10] и генотипированных с использованием SSR маркеров [9]. Образцы *in vitro* коллекции периодически тестируются на наличие бактериальных и вирусных инфекций [1, 2]. Для надежного сохранения образцов коллекции недавно в ВИРе были начаты работы по криоконсервации селекционных сортов малины и ежевики.

Криохранение растений представляет собой долгосрочное хранение растительных органов и тканей в жидком азоте (- 196 °C) таким образом, что жизнеспособность эксплантов сохраняется и после оттаивания [14]. В настоящее время наибольшее рас-

пространение получил метод дроплет-витрификации, разработанный в 2005 году Panis с коллегами [12], с использованием которого в настоящее время созданы представительные криоколлекции образцов различных культур: банана в Бельгии [13], лука и чеснока в Южной Корее [8] и Германии [7]; картофеля в Перу [15] и в России [3]. Также известны публикации об успешной криоконсервации небольшого числа образцов малины [4, 11] и единичных сортов ежевики [16] с использованием этого метода.

Цель работы: апробировать модифицированный протокол метода дроплетвитрификации на выборке сортов малины красной.

Материалы и методы

В качестве исходного материала для экспериментов по криоконсервации *Rubus idaeus* (2n=2x=14) были изучены 10 селекционных сортов малины красной отечественной и зарубежной селекции из коллекции *in vitro* ВИР. В настоящей работе для экспериментов по криоконсервации почек микрорастений использовали метод дроплетвитрификации с быстрым погружением в жидкий азот. За основу экспериментов по криоконсервации и криохранению сортов малины был взят протокол, разработанный в 2005 году Panis с коллегами [12], с небольшими модификациями.

Для криоконсервации образцов малины мы использовали верхушечные почки *in vitro* размером 1,2-1,8 мм. Эксперименты проводили в трех повторностях, всего было изолировано по 180 эксплантов на образец, из которых 30 (10 х 3) служили контролем (без стадии погружения в жидкий азот), 60 (20 х 3) брали для учета регенерационной способности после оттаивания и 90 эксплантов (30 х 3) – для длительного хранения в криобанке ВИР. Последние 90 эксплантов были распределены в 9 криопробирок по 10 эксплантов в каждой. Такой подход позволяет не только сохранить образец в криобанке, но и изымать по необходимости часть материала для мониторинга регенерационной способности данного образца.

Частоту регенерации эксплантов после оттаивания у разных сортов, а также в контроле оценивали на 3 и 6 неделях. После переноса сформировавшихся регенерантов на питательную среду ½ МС без гормонов проводили наблюдения за развитием растений-криорегенерантов в сравнении с контрольными вариантами, оценивая число листьев и корней микрорастений.

Результаты и обсуждение

Первоначально с одним сортом Барнаульская были проведены эксперименты (в трехкратной повторности) по оптимизации ключевых этапов криоконсервации. Для выявления оптимальной продолжительности обработки эксплантов криопротектором эксплантов верхушечные почки малины подвергали воздействию раствором PVS2 в течение 20, 30, 40 и 60 минут. Максимальная (р≤0,05) частота регенерирующих эксплантов наблюдалась при 30-минутной обработке раствором PVS2. После 60-минутной обработки только 35,5±2,2% эксплантов формировали регенеранты, а в варианте 20-минутной инкубации - все экспланты погибли. В дальнейших вариантах опытов по криоконсервации представителей рода Rubus мы использовали 30-минутный вариант обработки эксплантов криопротектором PVS2.

Кроме того, была проведена оценка влияния типа экпланта на жизнеспособность и регенерационную способность после оттаивания (рис. 1).

Полученные результаты показали, что достоверно (p<0,05) более высокие показатели регенерации были получены в случае криоконсервации верхушечных почек ($56,1\pm7,3\%$) по сравнению с пазушными почками ($21,5\pm3,8\%$). В дальнейшем для криоконсервации образцов малины использовали только верхушечные экспланты.

Жизнеспособность 10 изученных образцов малины после оттаивания варьировала от 44,4 до 80,9%, в среднем по выборке - $62,7\pm4,2\%$. Регенерационная способность изученных образцов малины составила от 24,2 до 80,9%, и в среднем по выборке - $52,0\pm6,6\%$. Коэффициент ранговой корреляции Спирмена для значений показателей жизнеспособности и регенерационной способности составил 0,86, что указывает на достоверную положительную корреляцию между ними.

Рис. 1 Посткриогенная регенерация эксплантов верхушечных (слева) и пазушных (справа) почек малины сорта Барнаульская

В пределах изученной выборки сортов малины было показано существенное влияние генотипа на регенерационную способность почек после оттаивания ($p \le 0.05$). Максимальная частота регенерации отмечена у эксплантов сорта Бальзам ($80.9 \pm 5.9\%$), минимальная – у эксплантов сорта Скромница ($24.2 \pm 5.6\%$).

Международная организация по сохранению биоразнообразия (IPGRI) рекомендовала криобанкам пополнять криоколлекции образцами, проявляющими как минимум 20% регенерации после оттаивания [6]. Позднее этот порог был увеличен до 40% [5]. Поэтому образцы, помещенные в криобанк ВИР, были дифференцированы на три группы:

- А) образцы с высокой регенерационной способностью, соответствующей современным требованиям по созданию криобанков растений (выше 40%);
- Б) образцы, уровень регенерационной способности которых находится между двумя установленными порогами (21-39%);
- В) образцы, регенерационная способность которых ниже 20%. Для образцов этой группы необходимо провести криоконсервацию дополнительных эксплантов, чтобы увеличить вероятность их надежного посткриогенного восстановления.

Из 10 изученных образцов малины 8 были отнесены к группе A, два образца – к группе Б. Ни один образец не проявил уровень регенерационной способности ниже 20%, что говорит об успехе проведенных экспериментов по криоконсервации.

Развитие растений-криорегенерантов существенно не отличалось от контрольных. Все криорегенеранты и контрольные микрорастения укоренялись в течение двух недель после переноса их на питательную среду $\frac{1}{2}$ MC.

Выводы

Модифицированный протокол дроплет-витрификации [12] был успешно использован для криоконсервации верхушечных почек микрорастений 10 сортов малины красной из *in vitro* коллекции ВИР.

Список литературы

- 1. Антонова О.Ю., Дунаева С.Е., Ухатова Ю.В., Камылина Н.Ю., Долганова Н.А., Лисицына О.В., Гавриленко Т.А. Оздоровление малины от вируса кустистой карликовости (RBDV) методом комплексной терапии в культуре *in vitro*. Достижения науки и техники АПК. -2015. -T.29. -№7. -C.61-64.
- 2. Дунаева С.Е., Пендинен Г.И., Антонова О.Ю., Швачко Н.А., Волкова Н.Н., Гавриленко Т.А. Сохранение вегетативно размножаемых культур в *in vitro* и криоколлекциях / Под. ред. Гавриленко Т.А. // Методические указания. СПб, ГНУ ВИР Россельхозакадемии. -2011.-72 с.
- 3. Ухатова Ю.В., Швачко Н.А., Гавриленко Т.А. Криоконсервация образцов культурных видов картофеля из коллекции ВИР. Картофелеводство: Материалы международной научно-практической конференции «Развитие новых технологий селекции и создание отечественного конкурентоспособного семенного фонда картофеля». 5-7 июля 2016г./ ФГБНУ ВНИИКХ; под ред. С.В. Жеворы. М., 2016. С.22-27.
- 4. *Condello E., Ruzić D., Panis B., Caboni E.* Raspberry Cryopreservation by Droplet Vitrification Technique // Acta Hortic. 2011. V. 918. Pp. 965-969.
- 5. *Dussert S., Engelmann F. and Noirot M.* Development of probabilistic tools to assist in the establishment and management of cryopreserved plant germplasm collections // Cryo-Letters. 2003. No. 24. Pp. 149-160.
- 6. IPGRI, 2000. Cryopreservation of tropical plant germplasm / Current research progress and applications Engelmann F.; Takagi H. (eds.). -496 p.
- 7. Keller E.R.J., Sunura A., Zanke Ch., Grüb M., Kaczmarczyk A. Cryopreservation and in vitro culture State of the art as conservation strategy for genebank // Acta Hort. 2011. V. 918. Pp. 99–111.
- 8. *Kim H.-H.*, *Lee J.-K.*, *Hwang H.-S.*, *Engelmann F.* Cryopreservation of garlic germplasm collections using the droplet-vitrification technique // CryoLetters. 2007. No. 28. –Pp. 471-482.
- 9. *Lamoureux D.*, *Sorokin A.*, *Lefèvre I.*, *Alexanian S.* Investigation of genetic diversity in Russian collections of raspberry and blue honeysuckle // Plant Genet Resour. 2011. No 9. V.2. Pp. 202–209.
- 10. Lefevre I., Ziebel, J., Guignard C., Sorokin A., Tikhonova O., Dolganova N., Hoffmann L., Eyzaguirre P., Hausman J-F. Evaluation and comparison of nutritional quality and bioactive compounds of berry fruits from Lonicera caerulea, Ribes L. species and Rubus idaeus grown in Russia // Journal of Berry Research. 2011. No.1. Pp. 159–167.
- 11. *Nukari A., Uosukainen M., Laamanen J., Rantala S.* Cryopreservation of horticultural plants at MTT / In: Grapin A, Keller ERJ, Lynch PT, Panis B, Revilla Bahillo A, Engelmann F (eds). Proceeding of the final meeting COST Action 871 CryoPlanet "Cryopreservation of crop species in Europe". 2011. Pp. 93-97
- 12. *Panis B.*, *Piette B.*, *Swennen R.* Droplet vitrification of apical meristems: A cryopreservation protocol applicable to all *Musaceae* // Plant Sci. 2005. No. 168. Pp. 45–55.
- 13. *Panis B*. Cryopreservation of Musa germplasm: 2nd edition. Technical Guidelines No. 9 (F. Engelmann and E. Benson, eds). Bioversity International, Montpellier, France, 2009. 51 p.
 - 14. Reed B.M. Plant cryopreservation: A practical guide. Springer, New York, 2008.
- 15. Vollmer R., Villagaray R., Egúsquiza V., Espirilla J., García M., Torres A., Rojas E., Panta A., Barkley N. A., Ellis D. The potato cryobank at the International Potato Center (CIP): a model for long term conservation of clonal plant genetic resources collections of the future // CryoLetters. 2016. No.37. V.5. Pp. 318-329.

16. Vujović T., Sylvestre I., Ružić D.J., Engelman F. Droplet vitrification of apical shoot tips of Rubus fruticosus L. and Prunus cerasifera Ehrh. // Scientia Horticulturae. – 2011. – No.130. – Pp. 222–228.

Ukhatova Y.V., Dunaeva S.E., Pozdnyakova K.S., Gavrilenko T.A. *Rubus* biodiversity preservation *in vitro* and in cryocollections at VIR // Woks of the State Nikit. Botan. Gard. -2017. - Vol.144. - Part I. - P. 71-75.

There are the data about *Rubus in vitro* collection at VIR and the first results of raspberry cultivars cryopreservation by droplet-vitrification method shown in this article.

Key words: red raspberry cultivars, cryopreservation, droplet-vitrification method.

УДК 581.5 (575.2) (04)

СОВРЕМЕННОЕ СОСТОЯНИЕ ГЕНЕТИЧЕСКИХ РЕСУРСОВ ДИКИХ СОРОДИЧЕЙ КУЛЬТУРНЫХ РАСТЕНИЙ В ОРЕХОВО-ПЛОДОВЫХ ЛЕСАХ ЮЖНОГО КЫРГЫЗСТАНА

Кайыркул Тункатарович Шалпыков¹, Айбек Канатьекович Долотбаков¹, Максатбек Аблабекович Бейшенбеков¹, Мухаббат Кузиевна Турдиева²

¹Инновационный центр фитотехнологий НАН КР, г. Бишкек, Кыргызская республика, alhor6464@mail.ru

²Bioversity-Uzbekistan, г. Ташкент, Узбекистан, m.turdieva@cgiar.org

В горах Западного Тянь-Шаня (южный Кыргызстан) нами изучены самые крупные в мире, по площади и разнообразию древесно-кустарниковых растений, орехово-плодовые леса. В лесах произрастают орех, фисташка, миндаль, яблоня, груша, слива, боярышник, виноград, облепиха, смородина, барбарис и др. плодовые и лесные породы. По разнообразию видового состава плодовых растений Западный Тянь-Шань имеет много общего с другими горными районами Центральной Азии, которую считают центром происхождения и хранилищем генетических ресурсов большого числа ныне культивируемых плодовых растений. Многие стародавние местные сорта таких культур, как грецкий орех, яблоня, абрикос, слива, виноград, гранат, миндаль, выращиваемые населением в горных районах обладают удивительным сходством с их дикорастущими сородичами из горных лесов.

Ключевые слова: орехово-плодовые леса; орех грецкий; дикий виноград; алыча согдийская; смородина Мейера; фисташка настоящая; облепиха крушиновидная.

Введение

В горах Западного Тянь-Шаня (южный Кыргызстан) находятся самые крупные в мире, по площади и разнообразию древесно-кустарниковых растений, ореховоплодовые леса. В лесах произрастают орех, фисташка, миндаль, яблоня, груша, слива, боярышник, виноград, облепиха, смородина, барбарис и другие плодовые и лесные породы. По разнообразию видового состава плодовых растений Западный Тянь-Шань имеет много общего с другими горными районами Центральной Азии, которую считают центром происхождения и хранилищем генетических ресурсов большого числа ныне культивируемых плодовых растений. Многие стародавние местные сорта таких культур, как грецкий орех, яблоня, абрикос, слива, виноград, гранат, миндаль, выращиваемые населением в горных районах обладают удивительным сходством с их дикорастущими сородичами из горных лесов. Еще в глубокой древности растения с лучшими плодами переносились из леса поближе к жилищам и распространились с тех пор по всему миру, участвовали в происхождении культурных сортов.