ПОЧВЫ ОКРЕСТНОСТЕЙ ОПУКСКОГО ПРИРОДНОГО ЗАПОВЕДНИКА

Н.А. ДРАГАН, кандидат сельскохозяйственных наук

ВВЕДЕНИЕ

Происхождение и развитие почв теснейшим образом связано с физико-географической средой и историей ее развития (см. выше статью В.К. Голенко). Компоненты природной среды, под воздействием которых формируется почвенный покров, называют факторами почвообразования. В.В. Докучаев считал основными, равнозначными и незаменимыми факторами почвообразования следующие: материнские горные породы, климат, живые и отмершие организмы, рельеф и время взаимодействия этих компонентов природы, т.е. возраст территории. Пестрота почвенного покрова и его разнообразие существенно влияют на формирование растительного покрова и в целом на состав флоры.

Статья подготовлена на основе исследований автора, ученых Крыма и материалов крупномасштабного обследования почв колхозов и совхозов Ленинского района Крыма.

ОБЪЕКТЫ И МЕТОДЫ

Почвенный покров прилегающих к Опукскому природному заповеднику территорий характеризуется большой компонентностью, контрастностью, комплексностью и геохимической неоднородностью, что обусловлено прежде всего литолого-геоморфологическими факторами, описанными выше А.А. Клюкиным. На сравнительно небольшой площади сформировалось восемь типов почв, представленных значительным количеством разновидностей.

В условиях засушливого климата под типично степной и сухостепной растительностью в автоморфном водном режиме сформировались, соответственно, черноземы и каштановые почвы. Их площадь на изучаемой территории невелика и приурочена к автономным позициям элювиальных ландшафтов. Основным типом почвообразовательного процесса для этих почв является гумусово-аккумулятивный с большой долей участия процессов минерализации органического вещества.

Черноземы представлены подтипом южных, что соответствует характеру растительности. Диагностические признаки подтипа наиболее четко проявляются при почвообразовании на лессовидных суглинистых и легкоглинистых материнских породах, что имеет место на Чебакской равнине вдоль моря, а также севернее села Марьевка, то есть за пределами заповедника.

На элювии и делювии плотных засоленных глин сформировались черноземы слитые солонцеватые, в том числе слабосмытые (около 4% площади этих почв), средне- и сильносмытые (по 0.5%). Они располагаются к северу от заповедной территории.

На элювии, делювии и пролювии карбонатных пород развиваются черноземы карбонатные щебнисто-каменистые, в разной степени смытые, а также неполно развитые их варианты, относимые к типу дерновых карбонатных почв. Эта группа почв приурочена фрагментарно к Параболической гряде и вершинам гор Опук, Приозерная, Острая. На склонах г. Опук почвенный покров сильно нарушен природными и антропогенными деформационными процессами.

В балках и ложбинах формируются лугово-черноземные и лугово-каштановые почвы, преимущественно солонцеватые. В лощинах и оврагах располагаются сильно эродированные почвы.

На большей части Кояш-Узунларской равнины распространены темно-каштановые слитые солонцеватые глубокосолончаковатые почвы, в том числе в разной степени эродированные (до 8% площади их распространения), на продуктах выветривания тяжелых засоленных глин. К северу от озера Кояшского и Чебакской равнины этим почвам сопутствуют солонцы степные средне- и сильносолончаковатые, преимущественно сильносмытые. К пониженным элементам мезорельефа приурочены солонцы лугово-степные и луговые в разной степени

засоленные. В южной части Кояш-Узунларской равнины в комплексе с солонцами луговостепными выделяются солончаки хлоридно-сульфатного засоления.

По днищам высыхающих летом соленых озер образуются соровые (или шоровые) солончаки с признаками сильного оглеения.

Пересыпи и дюны заняты дерновыми примитивными микрогумусными почвами легкого гранулометрического состава.

Следует отметить, что детальная почвенная карта территории природного Опукского заповедника до сих пор не составлена.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Черноземы южные мицелярно-карбонатные слабогумусированные легкоглинистые на лессовидных легких глинах изучены за пределами заповедника, вблизи его границ. Как лучшая почва региона, в качестве эталона сравнения, разновидность этих почв описана ниже (Драган, 2004).

Местоположение профиля – равнинный участок. Угодье – залежь. Преобладает злаковая растительность. Вскипание от действия 10%-го раствора HCl наблюдается с глубины 40 см.

 A_0 (0-5 см) – рыхлая дернина.

 A_1 (0-42 см) — гумусово-аккумулятивный горизонт, свежий, темно-серый со слабым каштановым оттенком, легкоглинистый, зернисто-комковатый, рыхлый, густо пронизан корнями, переход постепенный по окраске, но заметный по "вскипанию".

 AB_{Ca} (42-62 см) - верхний переходный, темно-серый с буроватым оттенком, свежий, легкоглинистый, зернисто-комковатый, уплотненный, пористый, густо пронизан корнями; переход постепенный.

 B_{2Ca} (62-80 см) — переходный, темно-бурый, свежий, легкоглинистый, призмовидно-комковатый, более уплотненный, корней меньше, чем в предыдущем горизонте; переход постепенный.

 B_{3Ca} (80-115 см) — иллювиально-карбонатный, палево-бурый, свежий, "белоглазка" - яркая, четкая, наиболее обильная на глубине 90-100 см; уплотнен, комковатый, по граням структурных отдельностей есть темные гумусированные пятна; переход постепенный.

 C_{Ca} (115-180 см) — почвообразующая порода лессовидная легкая глина; палевый, плотный, пористый, крупнокомковатый; переход постепенный.

 C_{Caso4} (180-200 см) – гипсоносный горизонт почвообразующей породы; в верхней части горизонта гипс образует прожилки мелких кристаллов, ниже кристаллы крупнее, местами в виде друз.

Мощность гумусовых горизонтов (A+AB) этих почв колеблется в пределах 48-70 см, в том числе горизонта A-30-45 см. Гумусовые горизонты черноземов южных наследуют оттенки цвета материнской породы. Но тип строения почвенного профиля чернозема южного сохраняется и характеризуется следующими чертами: постепенность перехода от одного горизонта к другому (последующему), наличие «белоглазкового» горизонта с глубины 70-80 см, гипсоносного слоя – со 150-200 см.

Содержание гумуса в горизонте А редко превышает 4,0%, т. е. черноземы представлены преимущественно слабогумусированными видами. Используемые в земледелии виды черноземов содержат в пахотном слое (Ап) 2,5-3,5% гумуса. Отношение углерода гуминовых кислот к углероду фульвокислот (Сг:Сф) приближается к 2 (гуматный тип гумуса). рН водный сверху вниз по профилю изменяется в пределах от 6,8 до 8,0. Сумма поглощенных оснований составляет 30-40 мг-экв. на 100 г почвы, доля натрия от суммы преимущественно не превышает 4%. Черноземы южные на лессовидных отложениях выделяются лучшими физическими и водно-физическими свойствами, что обусловлено их гранулометрическим составом (тяжелосуглинистым и легкоглинистым). Химические и физические свойства черноземов южных солонцеватых существенно зависят от степени их солонцеватости.

В черноземах остаточно глубокосолонцеватых отмечается небольшое перераспределение коллоидной фракции веществ, что обусловливает уплотнение верхних переходных го-

ризонтов (AB_1 и B_2). Слабосолонцеватые виды близки по химическому составу и физическим свойствам к несолонцеватым видам: содержание гумуса в горизонте A составляет 2,5-3,0% и уменьшается сверху вниз по профилю до 0,6 - 0,8 % на глубине 90 см. Величина рН изменяется от 7,3 (в горизонте A) до 8,4 (B_2). Общая щелочность в иллювиальном карбонатном горизонте иногда повышается до 1 мг-экв. и более.

В средне- и сильносолонцеватых видах черноземов южных наблюдается ухудшение показателей химического состава и физико-химических свойств: возрастает доля обменного натрия в ППК соответственно до 5-10% и до 10-15% от суммы поглощенных оснований; уменьшается содержание гумуса до 2,0- 2,5% и соотношение Сг:Сф - до 1,2; ухудшаются физические свойства повышается плотность почвы, уменьшается воздухоемкость и водопроницаемость. Усиливается слитость почвенной массы в горизонтах накопления коллоидной фракции. Повышается общая щелочность солонцовых горизонтов. Солонцовый процесс существенно снижает плодородие почв.

Черноземы на сарматских и майкопских засоленных глинах, а также на продуктах разрушения известняков выделяются своеобразием строения профиля и свойств, унаследованных от материнских пород.

Черноземы южные солонцеватые слитые на плотных засоленных глинах содержат до 87% физической глины, в том числе до 60% ила. Распределение фракций частиц по профилю отражает небольшое накопление ила в иллювиальном горизонте на глубине 50-100 см.

Морфологическое строение профиля чернозема слитого характеризуется следующими чертами: мощность гумусовых горизонтов (А+АВ) достигают 80 см; горизонт А слабо обеднен коллоидами вследствие их выноса вниз по профилю, его мощность 28-45 см, цвет темносерый или серый с буроватым оттенком, зернисто-комковатый с намечающейся ореховатостью, уплотнен; переход постепенный. Верхний переходный горизонт (ABtna) мощностью 25-35 см заметно обогащен коллоидами, темнее предыдущего, с буроватым оттенком, ореховато-призматической структуры, с хорошо выраженным глянцем на гранях структурных отдельностей, уплотнен; переход постепенный. Нижний переходный горизонт (В2са) мощностью 15-40 см буровато-сероватый, иногда пестрый по окраске от потёчности гумуса в виде темно-серых языков; ореховатый, плотный; «белоглазка» в виде крупных редких расплывчатых пятен желтоватого или буроватого цвета. Почвообразующая порода (Сса, S), тяжелая плотная глина, может быть разных оттенков - от серых до коричневых. «Вскипание» от действия НС1 может наблюдаться как с поверхности так и с некоторой глубины (25-46 см). При наличии карбонатности по всему профилю значительно ослабляются визуальные признаки солонцеватости. Материнские слабокарбонатные глины обычно более плотные и засоленные, т. е. менее измененные процессами выветривания. Иногда «вскипание» наблюдается локально, вкраплениями по карбонатным скоплениям и вокруг них в ореоле шириной до 2,5 см. Доля обменного натрия в ППК этих почв составляет 10,6% в горизонте А и около 16% в АВtna (солонцовый горизонт), что указывает на сильную степень солонцеватости (табл. 1). Встречаются и более высокие значения доли поглощенного натрия от суммы обменных катионов.

Следует отметить сравнительно низкое содержание обменного магния (до 3,3% суммы поглощенных оснований), но высокое – кальция (до 87,7%). Величина рН водной суспензии колеблется от 8,5 до 9,1, наибольшие значения приходятся на иллювиальные горизонты. Содержание карбоната кальция в описываемой почве не превышает 8% даже в горизонтах его накопления (B_{2Ca} и BC_{Ca}).

Солонцеватость черноземов на плотных глинах обусловлена галогенностью, слитостью, низкой водопроницаемостью почвообразующих пород и недостаточностью увлажнения. Общая сумма водорастворимых солей в толще майкопских глин достигает в отдельных местах 4%. В почвообразующих породах сухой остаток водной вытяжки колеблется в пределах 1,5 - 3,2% (табл. 2).

Тип засоления в верхней части солевого горизонта с глубины 70-80 см хлоридно-содовый. В почвообразующей породе засоление хлоридно-сульфатное натриевое.

Таблица 1
Химические и физико-химические свойства чернозема солонцеватого на майкопской глине
(по Севастьянову, 1961)

Гене-	Глу-	Гиг-	Гу-	CaCO ₃ ,	рН	Сумма	Доля обменных ос-		ых ос-
тиче-	бина	poc-	мус,	%	водной	обменных	нований, % от сум		т сум-
ский	слоя,	копи-	%		суспен-	оснований,	МЫ		
гори-	СМ	ческая			ЗИИ	мг-экв./ 100			
ЗОНТ		влага,				г почвы			
		%							
A	0-10	7,8	3,2	0,2	8,5	38,0	87,6	1,8	10,6
ABt_{Na}	25-35	8,7	2,4	1,8	8,7	37,1	87,7	1,8	10,5
B_{2Ca}	55-65	8,5	1,8	4,0	9,1	36,4	80,8	3,3	15,9
BC_{Ca}	85-95	8,7	1,5	7,9	8,8	Не определялось			

Таблица 2 Химический состав водной вытяжки из почвенных образцов чернозема южного слитого на майкопской глине

Глуби-	Сухой	Содержание ионов, мг-экв./100 г почвы								
на, см	остаток,	CO_3^{2-}	HCO ₃	CI	SO_4^{2-}	Ca ²⁺	Mg^{2+}	K ⁺ +Na ⁺		
	%									
10-20	0,09	нет	0,82	0,03	0,46	0,49	0,22	0,60		
40-50	0,12	нет	1,42	0,08	0,58	0,25	0,35	1,48		
70-80	0,23	0,23	1,85	0,46	0,27	0,25	0,35	2,21		
90-100	0,24	0,09	1,12	0,98	1,23	0,40	0,33	2,60		
120-130	1,48	нет	0,66	4,60	13,90	3,20	1,92	14,04		
140-150	2,70	нет	0,42	4,76	31,48	14,85	4,42	17,39		
240-250	3,20	нет	0,33	6,83	36,10	14,45	5,75	23,17		

Наряду с сильносолонцеватыми видами черноземов южных на плотных глинах встречаются и слабо-, среднесолонцеватые (Драган, 1983). Все эти виды характеризуются неблагоприятными для растений водно-физическими свойствами, обусловленными тяжелоглинистым механическим составом, высокой плотностью сложения, низкой пористостью. Среди этих черноземов встречаются солончаковатые (соли с 30-80 см), глубокосолончаковатые (соли с 80-150 см) и глубокозасоленные (соли глубже 150 см). По содержанию гумуса эти черноземы также слабогумусированные. Соотношение Ст:Сф в керченских черноземах сравнительно невысокое, что свойственно солонцовым родам почв.

Черноземы карбонатные слабогумусированные тяжелосуглинистые и легкоглинистые в разной степени скелетные на продуктах разрушения карбонатных пород встречаются совместно с дерновыми карбонатными почвами. Почвообразующие породы этой группы почв представлены элювием, делювием, элюво-делювием известняков. Особенности материнских пород, их карбонатность, различная степень дезинтеграции и накопления вторичных минералов, разнообразие механического состава, придает развивающимся на них почвам специфические черты, прежде всего – карбонатность и скелетность (гравелистость, шебнистость, каменистость).

В местах близкого залегания к дневной поверхности плотных пород можно встретить черноземные почв разной мощности, неодинаковой степени развития, различной скелетности. В расположении рассматриваемых почв наблюдается определенная закономерность: на участках относительно самых высоких элементов мезорельефа формируются короткопрофильные и маломощные виды черноземов, гумусированная часть профиля которых не превышает 25 и 40 см соответственно; им нередко сопутствуют примитивные и неполноразви-

тые почвы, а также выходы плотных пород; ниже по склону мощность профиля в целом, в том числе его гумусированной части, постепенно возрастает, достигая в средней трети склона мощности 50-65 см, а в нижней части склонов нередко больше 100 см.

Черноземы на плотных карбонатных породах отличаются от почв того же типа на мелкоземистых породах не только скелетностью, но и отсутствием в большинстве видов скоплений «белоглазки» и гипса, т. е. характерных черт подтипа южных черноземов. Поэтому подтиповая принадлежность (слово «южный») в наименовании этих почв обычно опускается.

Морфологический профиль черноземов карбонатных состоит из гумусового горизонта (A) различной мощности, верхнего переходного (AB_1) и нижнего переходного (B_2) горизонтов. Цвет гумусового горизонта в разных видах карбонатных черноземов изменяется от черно-серого и темно-серого с буроватым или красно-коричневым оттенком до светло-серого или буровато-серого, что определяется не только содержанием в нем гумуса и карбонатов, но также цветом материнской породы. Содержание гумуса в черноземах карбонатных колеблется от 3 до 5,5%, в его составе преобладают фракции гуминовых кислот, связанных с кальцием. Отношение $Cr:C\phi$ большей частью не превышает 1,5, уменьшаясь с глубиной.

Солевой профиль черноземов карбонатных скелетных отличается однообразием: водорастворимых солей в них мало (сухой остаток водной вытяжки большей частью не превышает 0,15%). В составе водорастворимых солей преобладают бикарбонаты магния и кальция. Актуальная реакция этих почв слабощелочная и щелочная (рН водный колеблется в пределах 7,2-7,7, а в сильнокарбонатных слоях достигает 8,3). В условиях избыточной карбонатности, повышенной щелочности подвижность соединений железа и некоторых микроэлементов очень низкая, вследствие чего культурные растения на таких почвах нередко болеют хлорозом и другими недугами обмена веществ. Гранулометрический состав почвенного мелкозема скелетных почв может быть легкоглинистым, средне- или тяжелосуглинистым, но присутствие скелета существенно изменяет механический состав субстрата в целом. Физические и водно-физические свойства этих черноземов в значительной степени определяются их скелетностью, мелкоструктурностью мелкозема, насыщенного кальцием, высокой общей скважностью, достигающей в гумусовом горизонте 60% объема. Вследствие большой скважности скелетные почвы характеризуются высокой воздухоемкостью и водопроницаемостью, но малой водоудерживающей способностью, особенно в слоях ниже гумусового горизонта при сильной их каменистости.

Дерновые карбонатные почвы характеризуются малой мощностью профиля, значительной скелетностью, насыщенностью основаниями, из которых господствует кальций. На маломощном элювии плотных пород эти почвы выделяются не только сильной скелетностью, но и фрагментарностью гумусового горизонта.

Содержание гумуса в дерновых карбонатных почвах изучаемой территории не превышает 3%; по мощности гумусового горизонта распространены маломощные (менее 15 см) и среднемощные (более 15 см). По механическому составу наиболее часто встречаются тяжелосуглинистые разновидности. Скелетность этих почв разнообразная от слабой до сильной.

Основные физические свойства черноземов на Керченском полуострове достаточно хороши у разновидностей, развившихся на лессовидных отложениях, и ухудшаются с утяжелением гранулометрического состава. Тяжелосуглинистые и легкоглинистые разновидности характеризуются небольшими значениями плотности с ненарушенным сложением почвы: $1,10-1,32 \text{ г/см}^3$ в гумусовых горизонтах (A+AB) и $1,35-1,48 \text{ г/см}^3$ в переходных (B_{2Ca}, B_{3Ca}). Пористость этих почв в соответствующих горизонтах составляет 50-57% и 43-47% объема почвы. Среднеглинистые разновидности отличаются более высокими (на $0,1-0,2 \text{ г/см}^3$) значениями объемной массы и меньшей пористостью, что обусловливает меньшую их водовместимость и воздухоемкость. В зависимости от гранулометрического состава черноземов южных запасы влаги в метровом слое, соответствующие наименьшей влагоемкости (HB), колеблются в пределах 300-350 мм, в том числе диапазон активной влаги 100-150 мм; последний показатель, а также водопроницаемость уменьшаются в более тяжелых по механическому составу разновидностях.

*Лугово-черноземные почвы - полугидроморфны*е аналоги черноземов. В отличие от последних, они развиваются в условиях повышенного увлажнения за счет местных временных скоплений влаги поверхностного стока, или за счет питания со стороны грунтовых вод, или за счет их совместного влияния. Уровень грунтовых вод (УГВ) отмечается с глубины 3-7 м (в случае тяжелого механического состава почвогрунтов) и 2-4 м (в случае легкого), вследствие чего почвенный профиль находится под влиянием пленочно-капиллярных вод. Водный режим этих почв характеризуется чередованием периодов промачивания и возвратного капиллярного поднятия влаги с сохранением переувлажнения нижней части профиля продолжительное время.

На изучаемой территории лугово-черноземные почвы распространены в днищах балок и лощинах. Почвообразующими породами для них служат делювиальные глины. В естественных условиях лугово-черноземные почвы формируются под лугово-степными растительными сообществами. Эти почвы диагностируются по устойчивым признакам *оглеения* в виде оливково-сизых и ржаво-бурых пятен, расплывчатой форме «белоглазки» или отсутствию ее. Кроме того, обычно они несколько богаче гумусом, чем черноземы, и отличаются большей мощностью горизонтов A+AB (60-80 см). Вместе с тем содержание гумуса в горизонте А различных видов лугово-черноземных почв значительно колеблется (2,0-4,8%). Сумма поглощенных оснований, рН и другие показатели физико-химических и химических свойств тоже сильно варьируют в соответствии с принадлежностью почвы к тому или иному роду (карбонатные, или солонцеватые, или солончаковатые, или осолоделые).

Темно-каштановые солонцеватые солончаковатые почвы на тяжелых засоленных глинах образуются в плакорных условиях сухих степей под типчаково-ковыльной и полынно-типчаково-ковыльной растительностью при неустойчивом и недостаточном увлажнении атмосферными осадками, что определяет меньшее, чем в черноземах, накопление гумуса, меньшую глубину промачивания влагой и вымывания солевых продуктов почвообразования.

Морфологический профиль темно-каштанового солонцеватых почв в общих чертах имеет следующее строение: A-Btna- $B2_{Ca}$ - BC_{Ca} - C_{CaS} . Доля поглощенного натрия от емкости катионного обмена (ЕКО) составляет 3-5% в слабосолонцеватых, 5-10% в среднесолонцеватых и 10-15% в сильносолонцеватых. С учетом мощности гумусированных горизонтов A+ B_1 выделяются следующие виды почв каштанового типа: мощные (более 50 см), среднемощные (30-50 см), маломощные (20-30 см) и очень маломощные (менее 20 см).

Темно-каштановые средне- и сильносолонцеватые слитые среднеглинистые почвы на засоленных плотных глинах Керченского полуострова характеризуются рядом специфических особенностей. Горизонт А мощностью 25-35 см, темно-серый или серовато-каштановый, разбит на узкие столбики; горизонт В серовато-коричневый, очень плотный, глыбистый, распадается на крупные ореховатые отдельности с глянцем на гранях; B_{Ca} мощностью 25-30 см с редкой бледной «белоглазкой». Солевой горизонт залегает с глубины 75-100 см, содержит гипс и легкорастворимые соли, карбонатов в нем очень мало. Солонцеватость в керченских темно-каштановых почвах на плотных глинах морфологически и физико-химически выражена сильнее, чем в почвах того же подтипа, сформировавшихся на лессовидных породах. Морфологически она проявляется в обособлении надсолонцового и солонцового горизонтов, а физико-химически — в повышении доли обменного натрия (до 20% от ЕКО).

С возрастанием солонцеватости почв усиливается дифференциация профиля по элювиально-иллювиальному типу, что обнаруживается морфологически только в целинных вариантах. Элювиированность проявляется в осветлении окраски гумусового горизонта за счет накопления кремнезема. Иллювиированность морфологически заметна по увеличению плотности горизонта В₁ (объемная масса в этом горизонте возрастает до величины 1,5-1,6 г/см³), по слитости и призмовидности структурных отдельностей, по более явному глянцу на их гранях. Согласно аналитическим данным (Драган, 2004), максимум в содержании илистой фракции в солонцеватых почвах приходится на нижнюю часть гумусового переходного горизонта, где увеличивается и содержание поглощенного натрия. Солевой горизонт располагается с 80-150 см. По степени эродированности эти почвы подразделяются на слабосмытые (смыто не более половины горизонта A), среднесмытые (горизонт A смыт более, чем на половину) и сильносмытые (смыт частично или полностью горизонт B_1).

К солонцам относятся почвы, содержащие в почвенном поглощающем комплексе (ППК) гумусового горизонта такое количество обменного натрия, которое обусловливает в почвах ряд специфических свойств: щелочную реакцию, образование соды, большую растворимость органических веществ и подвижность коллоидов, высокую дисперсность минерального мелкозема, вязкость, липкость, набухание почвенной массы во влажном состоянии и сильное уплотнение, твердость при иссушении. Солонцы обладают малой водопроницаемостью и ограниченной физиологической доступностью влаги. В нижних слоях почвенного профиля в большинстве случаев содержатся легкорастворимые соли, токсичные для культурных растений.

Для солонцов характерна резкая дифференциация профиля. В обобщенном виде он состоит из следующих генетических горизонтов: A- Bt_{Na} - B_{Ca} - B_{CaS} -BCs-Cs, где A - гумусовый, элювиальный по илу («надсолонцовый»), иногда подразделяется на подгоризонты A_1 – гумусовый и A_2 — осолоделый; Bt_{Na} — иллювиально-гумусовый (собственно солонцовый), плотный, в сухом состоянии трещиноват, с характерной столбчатой, призматической или ореховатой структурой; B_{Ca} — «подсолонцовый», слабо гумусирован, ореховатый, менее плотный, карбонатный, возможны выцветы солей.

По характеру увлажнения солонцы подразделяются на автоморфные (степные), полугидроморфные (лугово-степные) и гидроморфные (луговые), которые в свою очередь делятся, соответственно, на черноземные и каштановые, лугово-черноземные и лугово-каштановые, черноземно-луговые и каштаново-луговые.

Черноземные и каштановые солонцы распространены на засоленных породах в автоморфных условиях (УГВ глубже 5 м), соответственно, среди черноземов и каштановых почв. Содержание обменного натрия в ППК этих солонцов зависит от характера почвообразующих пород: на лессовидных отложениях доля натрия от ЕКО составляет 10-15%, а на майкопских глинах 20% и более. По мощности надсолонцового горизонта выделяют глубокие (горизонт А более 15 см), средние (5-15 см) и мелкие (менее 5 см) солонцы. По глубине залегания первого от поверхности солевого горизонта различают солончаковатые (30-80 см) и солончаковые (0-30 см) солонцы. В автоморфных и полугидроморфных солонцах преобладают глубокие солончаковатые роды. По характеру засоления они хлоридно-сульфатные. Вскипание в солонцах на лессовидных породах и на сарматских глинах наблюдается с глубины 29-62 см; солонцы на майкопских глинах часто бывают бескарбонатными (Полевой определитель почв, 1981).

Среди каштановых солонцов наряду с глубокими и средними встречаются и мелкие. Чем меньше мощность надсолонцового горизонта и больше солонцового, чем ближе к поверхности залегает солевой горизонт, тем хуже эдафические условия для растений.

Содержание гумуса в солонцах обычно несколько меньше, чем в зональных почвах, которым они сопутствуют: 2-2,5% в черноземных и 1,5-2% в каштановых.

Солонцы лугово-степные располагаются на пониженных элементах рельефа при залегании УГВ в пределах 3-5 м. Они сопутствуют, соответственно, лугово-черноземным и лугово-каштановым почвам и отличаются от солонцов автоморфных наличием признаков оглеения (сизоватость) в горизонте Cs.

Солонцы луговые встречаются на низких участках с залеганием УГВ с глубины 1-3 м. В этих почвах помимо солонцового выражены глеевый и солончаковый процессы. Среди солонцов гидроморфных наиболее распространены корковые, мелкие и средние солончаковые. Интенсивность солончакового процесса в гидроморфных почвах зависит не только от глубины залегания УГВ в жаркое время, но и от степени минерализации грунтовых вод. Чем ближе к дневной поверхности при слабой естественной дренированности находятся грунтовые воды, тем больше содержится в них солей, в том числе хлоридов. При залегании УГВ ближе 2 м идет сезонно необратимое засоление почвенного профиля, при более глубоком их залегании (3-5 м) сезонное засоление перемежается с рассолением (Драган, 2004).

Солонцы солончаковые совмещают признаки солонцов и солончаков.

Солончаки — это засоленные почвы, в которых легкорастворимые соли во вредных для растений (не галофитов) количествах содержатся с поверхности и по всему профилю. Материнскими породами для них служат озерные, лиманные, лагунные илы, аллювиальные и делювиальные соленосные отложения, а иногда коренные глины. Морфологический профиль солончаков слабо дифференцирован. Диагностический признак этих почв — наличие выцветов солей, солевых корочек с поверхности или с глубины не более 30 см.

Содержание легкорастворимых солей в поверхностном солевом горизонте может достигать нескольких процентов, но не менее 1% при хлоридно-сульфатном засолении и не менее 0,5% при содовом. Различают два типа солончаков – автоморфные и гидроморфные.

Солончаки автоморфные сформировались на древних засоленных породах, обнажения которых проявились на эродированных склонах. Для них характерен *непромывной* водный режим (грунтовые воды залегают глубже 10 м), сочетающийся с *периодически выпотным* после выпадения атмосферных осадков и расходования их в виде *капиллярно-подвешенной* влаги. Солончаки этого типа в Крыму встречаются редко. Их можно наблюдать в местах обнажений майкопских и сарматских засоленных тяжелых глин. Такие солончаки относятся к роду *питогенных*. Для них свойственно хлоридно-сульфатное засоление и глубокопрофильное распределение солей, содержание которых может достигать 2-3%.

Солончаки гидроморфные развиваются в условиях близкого (0,5-3 м) залегания уровня минерализованных почвенно-грунтовых вод с преобладанием выпотного водного режима, вследствие которого в профиле накапливаются легкорастворимые соли, гипс и карбонаты. Эти почвы имеет выцветы солей с поверхности и по всему профилю. Максимальное содержание солей обычно обнаруживается в верхнем горизонте. Легкорастворимые соли и гипс образуют поблескивающие мелкокристаллические скопления, тогда как новообразования карбонатов выглядят матовыми. Кроме того, гидроморфные солончаки вследствие капиллярно-грунтового увлажнения всегда имеют признаки оглеения — сизоватый оттенок нижних горизонтов и ржавую пятнистость при подсыхании обнаженного профиля. Эти почвы хорошо выделяются среди других по характеру поверхности, обычно покрытой выцветами солей. На изучаемой территории они распространены на низменных лиманно-морских и озерных побережьях и представлены подтипами типичных, соровых и луговых.

Солончаки типичные имеют монотонный профиль (при однородной почвообразующей породе) или слоистый (на слоистых отложениях с различным гранулометрическим составом субстрата слоев). В профиле контрастно выделяется только верхний горизонт (5-10 см) с обильным скоплением солей. Гумусовый горизонт почти неразличим: содержание гумуса не превышает 1%, его состав фульватный. Количество основных элементов питания растений (азот, фосфор, калий) невелико. ЕКО до 20 мг-экв. на 100 г почвы, рН водный 7,3-7,5. Карбонаты присутствуют во всем профиле. В его нижней части наблюдаются сизые и охристые пятна, а с глубины около 1м оглеение выражено сильнее. Минерализованные грунтовые воды залегают с глубины менее трех метров. Водный режим почвы выпомной, солевой режим – необратимого засоления.

Солончаки соровые образуются по днищам периодически высыхающих соленых озер. Почвенно-грунтовые воды представлены рассолами и залегают с глубины 0,5-1,0 м. Содержание солей высокое (до 10%), а в поверхностной солевой корке может превышать 30%. Оглеение наблюдается по всему профилю. Гумусовых веществ крайне мало, органическое вещество представляют остатки озерных организмов. Соровые солончаки могут постепенно эволюционировать в типичные, если длительное время не покрываются водой.

ЗАКЛЮЧЕНИЕ

Рассмотренные характеристики почв и анализ параметров их свойств (Драган, 2004; с. 200-206) позволяют сделать вывод, что в окрестностях и *ad rem* на территории Опукского природного заповедника преобладают почвы невысокого бонитета качества, которые нет

смысла вовлекать в земледельческое использование. Вместе с тем, сочетание и комплексы почв территории окрестностей ОПЗ обеспечивают определенное естественное биоразнообразие, соответствующее конкретным природным условиям

СПИСОК ЛИТЕРАТУРЫ

Драган Н.А. Почвы Крыма / Учебное пособие. – Симферополь: СГУ, 1983. – 95 с.

Драган Н.А. Почвенные ресурсы Крыма. – 2-е изд., доп. – Симферополь: ДОЛЯ, 2004. – 208 с.

Полевой определитель почв / Под ред. Полупана Н.И., Носко В.С., Кузьмичева В.П. – К.: Урожай, 1981. - 318 с.

Севастьянов Н.Ф. Некоторые особенности черноземов Керченского полуострова, сформировавшихся на майкопских глинах, и повышение их плодородия // Труды УкрНИИПА им. Н.А. Соколовского. -1961.-T.5.-C.160-170.

SOILS OF ENVIRONS OF THE OPUK NATURE RESERVE

N.A. Dragan

Description of soils and soil cover in the environs of the Opuk Nature Reserve is given. Lithological and geomorphological soil-factors of this area made defined the compound, complexity and contrasting of soils cover. The variety of soils cover ensures the considerable biodiversity.